Sequential Convex Programming for the Efficient Verification of Parametric MDPs
نویسندگان
چکیده
Multi-objective verification problems of parametric Markov decision processes under optimality criteria can be naturally expressed as nonlinear programs. We observe that many of these computationally demanding problems belong to the subclass of signomial programs. This insight allows for a sequential optimization algorithm to efficiently compute sound but possibly suboptimal solutions. Each stage of this algorithm solves a geometric programming problem. These geometric programs are obtained by convexifying the nonconvex constraints of the original problem. Direct applications of the encodings as nonlinear programs are model repair and parameter synthesis. We demonstrate the scalability and quality of our approach by well-known benchmarks.
منابع مشابه
A necessary condition for multiple objective fractional programming
In this paper, we establish a proof for a necessary condition for multiple objective fractional programming. In order to derive the set of necessary conditions, we employ an equivalent parametric problem. Also, we present the related semi parametric model.
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملCharacterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملUsing lexicographic parametric programming for identifying efficient hyperpalnes in DEA
This paper investigates a procedure for identifying all efficient hyperplanes of production possibility set (PPS). This procedure is based on a method which recommended by Pekka J. Korhonen[8]. He offered using of lexicographic parametric programming method for recognizing all efficient units in data envelopment analysis (DEA). In this paper we can find efficient hyperplanes, via using the para...
متن کامل